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Abstract Complex processes are ofien modetled using input-output data from experimental tests. Regression and neural network
modelting techniques address this problem to some exient and are proving wuseful in optimisation or model-based control
applications. Unfortunately. the latter methods provide no physical insight into the underlying structural relationships inherent
within the data. Genetic Programming (GP) is an alternative data-based modelling technique that appears to potentially overcome
those limitations. The nature of GP-hascd modeliing s that solutions are “evolved” from n set of polential solutions by a process
which mimics Darwinian ‘survival of the fittiest”. The advantage of GP modeliing over neural networks and statistical technigues
is that this method can also discriminate between relevant and irrelevant process inputs, evolving (o yield parsimonious modet
siructyres that accurately represent process characterisiics. This climinates the need for restrictive a priori modelling
assumptions. Morcover, as the mothedology determines complex input-cutput interactions as well as inherent non-linearities,
non-intuitive process featares are also revealed with comparative ease. In this contribation, the application of GP techaigues o
steady-state and dynamic extruder modeliing is presented. Extruders are currently used in a broad range of process industries,
Cooking extruders are used widely in the food indusiry, as they provide an cfficient means for the continuous processing of a wide
range of foedsiuffs. Plasticating extrudurs are used fo extrude polymers for a range of applications, such as the coating of
elecironic wire or cables. Available exiruder models range from the purely smpirical to those based on fundamental transport
equations. In most cases these models have fimited validity in terms of operating conditions and system configuration, due io the
complex fow patterns, pressure and temperatore gradients and thermal effects that exist within an extruder. In this paper, a
stoady-siate model of 2 covking extruder i developed using input-output data generated from a rigorous mechanistic model. GP s
then applied 1o dynamic data {rom an industrial plasticating extruder 1o generaie a dynamic moedel using a time history of input
vasues, H is concluded that GP techniques may have furiher applications in the modelling of complex processes from
experimenial input-output dat,

properties, and complex flow patierns combine 0 cusure
that mechanistic models are difficult to develop. Data-based
modelling in this instance can provide a practical alternative
approach.

INTRODUCTHON

With the advent of cheap compulers and mass dals slorage
devices, mformation has become a major commodiy.
Unformmately the capacity w store and retricve data is not
always a blessing: large amounts of data can be difficuli o
handle and interpret. In eagincering, a crucial step is the

Currently, the majority of the popular data-based modsiling
methodologies can be castegorised under two headings. The

wransformation of raw data into a format usclul for solving a
particajar problem. To do this, most curenl approaches
tend o be based upon the development of a “modet” of the
process i gquestion, While an atempt can be made o
develop s model from hasic scientific principles, there are a
number of drawhacks 0 using this approach. Chemical
processes are often extremely complex. Thus, it may iake a
considerable period of time and offort o develop a realistic
mechanistic mode!l of the system. Moreover, in many
instances simplifying assumptions have to be made in order
w provide a tractable solution. Therefore, a first-principics
maode] will olica be costly o construct and may be subject (o
buiit in limitations on #s accuracy. Consequently, dala-
hased modeliing techniques are often preferred becasse of
their cost effectiveness,

Extrysion processes are geacrully  difficull o model
Sensitivily o varying screw and dic geometries, fluid
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firse uiilise artificial neural networks while the second are
based wupon stalistical and regression amalyses. This
contribution describes a novel approach which offers a
useful  alternative o these  data-based  modelling
methodotogies. The technique uses Genelic Programiming
(G {eg. Koza. {1992]; Kinncar, [1994]) to develop non-
finear models of chemical process systems from plant input-
output data. Unlike conventional modelling procedures that
seek the best set of parameters {or a pre-specified model, the
GF methodology performs symbolic regression to determine
the struciure and complexity of the required model
simuliancously with model parameter estimation,

GENETIC PROGRAMMING

CGenetic Programming began as an atiempt to discover how
compuiers could learn to solve problems without being



explicitly programmed o do so. The GP cchnigue bears a
strong  resemblance to Genctic Algorithms {eg. see
Goldberg, [19897) but uses a more flexible coding sysiem
which facilitates direct exccution of ‘genectic material’
(Kinnear. {19941).

To date, GP has heen used in the development of image
classification systems, the design of filters, {iting of chaotic
non-linear equations. feature detection and the evolution of
neural networks (sce Kinncar, [1994]), Here, we use GP o
evolve mathematical models of extrusion processes,

A flow diagram of a typical GP algorithm is shown in
Figure §. Initially, & popalation of ‘N random
mathematical  exprossions must be  generaied.  Each
expression is coded as a iree structure. For a thorough
discussion about trees and their propertics, see Tenenbaum
and Augensicin [1981]. However. it s sufficient [or the
purposes of this paper o introduce selevant werminology by
means of a simple cxample. Consider the problem of
predicting the numeric value of an output variable, v, from
two inpul variables ¢ and A, An cxample of a symbolic
reproscniation for y in torms of o and b s

y={g-M/3 (H
Figure {(2) demonstrales how this cxprossion may  he
represented using a tree structure. How free structures
‘evolve’ via the application of genctic operators will be
discussed iater.

k-3
4

Assignment of Fitness Yalues

Once the population has been filled with &V distinet, valid
trees, it is necessary to evaluate cach individual o determine
its fitness. Fitness is a nwneric value assigned 1o each
member of the population 1o provide a measure of the
appropriatencss  of the solution, In the literature. the
majority of fitness functions utilised arc based on the error
between the actual and predicied selutions, However, South
[1994] found that the correlation coclficient is a more useful
fitness function for aumeric prediciion problems, therelpre
this performance index was used throughout this work, The
absolute value of the correlation coctlicient is given by:

yeli iy (DY [ .vpr.r..f))fv .v;-m‘]
, j(z R [“ r N"w 2
(i) = _ ,
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where (i) 18 the predicted value of secord f7 by tree 1,
yr(j) is the targetl value, R is the number of data records,
G0} 18 1he standard deviation of the predicted values for
tree 7 and oy s the standard deviation of the target values.
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Figure 1: Typical genetic programming algorithm
flowsheet.

Figure Z: Representation of 2 numerical expression using a
free stracture.

The comrelation coefficient lies in the range {0 1] and
measures the way in which the predicted and target values
vary together. Therefore, credit is given (0 mathematical
functions of the correct foom,



Onee the fitness of cach individual has beea determined,
this information is used as the basis for selecting members
of the population for “reproduction’

Selection Sirategies

& number of selection methods have been suggested in the
Hterature. These include the elitist strategy. towrnament
selection and fitness proportionate selection, With the elitist
scheme. the population is sorted o descending order
according to individual {itness values. The fittest M (M = N}
individuals  then undergo  reproduction,  Tournument
selection involves random sampling (with replacement) of a
fixed number of individuals from the parent population 1o
form a subsct, The fistest member of this small subsct is then
¢hosen 1o reproduce., and the process is repeated as required,
With fiteess proportionate  selection, an  individual s
sampled (rom the parent populmion (with replacement).
with a probahility proportional to its fitmess, Thus, if the fth
tree structure in the parent population has a Ditness f; . the
probabiiity of this member being chosen is fif F . where Fis
the sum of the fHness of each member of the population, ic.

FaTf izl (3)

In this paper, fiiness proportonate sclecton was used as it
appears W e the currently favoured techaique within the
P Hterature.

Application of Genetiv Operators

Once an individual has been sclecied from the current
population,  three  basic genclic operators  (direct
seprnduction, crossover and mutation) may be applied. The
direct reproduction operator directly copics a member {rom
{he parent population o the nex1 peneration. The genetic
operation of crossover lakes two members and combines
them to oreate new offspring. The operation of mutation
silows neow mdividuals (o be created by making random
changes o individuals about @ cater the new generation,
thus keeping the population varied, The cheice of cach
operator 15 probabilistic, with cressover. mutation or disect
reproduction being applicd with probabilitics Po. Py, and
{1 - P - Py, respectively.

Direct  reproduction  reguires no  further  cxplanation,
nowover a more detailed discussion of the other genetic
operaiors {crossover and matation) is presented below,

Crossover: The sote of the crossover operator 1s 1o caploil
good maierial by recombining it in different ways, This
allows the construction of new individuals from existing
ones, cnabling now parts of the solwion space o be
scarched.

During  crossover. two  mathematical  expressions  {ic,
members of the cxisting population) are chosen using fitness
proporiionate selection. & randumly sclected subtree from
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paremt } i3 then interchanged with a subtree randomly
chosen from parent 2. The newly created trees are then
inserted into the mating pooi that wilt be used o form the
nexd generation,

The operation of crossover must preserve the syntax of the
mathematical expressions, In other words, application of the
genelic operator must produce an cquation thai can be
evaluated. A valid crossover eperation is shown below. Two
parent expressions are given by:

Parent 1: y={u-h/73 i)
Parent 2; y={c-b)Fla+c) {5y

Parent | has input variables ‘o’ and ‘5" and a constani 3’
while parent 2 has three input variables ‘o’, *b" and “¢
Both expressions atiempt (o predict the process outpat, “y.
The crossover operaiion can produce two new trees which

are given by:

y=(a-b/{a+e) (©)
y=(c-hy*3 (7

It will be noted that crossover produces two children that
may be quite different from the two parents. Devertheless,
the two offspring are created catirely from genetic material
possessed by the parents, [ntaitively, il a parent represenls a
reasonable solution o a mumeric prediction problem, then it
would be expected that it conlains subtrees with information
relevant o the solution. By recombining effective subirees,
new cxpressions may be evolved that provide an even [fitier
solution,

Mutation: The role of the mutation operator is o facititaie
exploration of different parts of the solution space. Mutation
creates an aliered individual which is copied 10 the next
generation of the population. Therefore, mutation is used to
maintain population diversity, henoe reducing the risk of
premawure  {poor) convergence. Mutation consists  of
randomiy changing a mathematical operator, an input or a
comstant in onc of the members of the cxisting population.

Thus, during evolution the direct reproduction, (I0S50Ver
and rutation operators are applicd 0 members of the
population. Fit individuals bave a higher probability of
passing clements of their structure on to the next generation.
This allows for the progressive evolution towards an
acceptable  soluton.  In practice, evolution can  be
surprisingly rapid.

Creating the Mext Generation

Once a population of new individuals has been generated, a
decision must be made as © which members of the old
population should “dic” to make room for (he next
generation, Several methods may be adopted. The simplest,
given M = N new individuals, is to replace the entire old
population so that there is a complete Wwmover [or every
cycle of the algorithm. However, it may be expedient to



retain the fittest members of the old population, in order o
ensure the survival of stractures that perform well, Thus, a
proportion Poe of the original gencration s proserved,
feaving Pep = (1 - Pou) a5 a "generation gap” (the proportion
1o be replaced with new individuals),

Implementation Aspects

The Terminagl Set: The first siep when implementing GP is
the definition of the erminal set. This is the set of input
variables that are thought 1o affect the outpul. In addition,
the alegorithm shouid have the abilHy o gencrate constanis,
It will generally be a combination of inpul values and
numeric constants that produce the required regression
model,

The Functional Sef: When initialising the algorithm it s
also necessary 1o identify the functional set that will be used
w gencrate a model. When developing o mathematical
model, typical functionals that may be supplied include. +. -,
7%, sgrt. exp, log. However, B is important W aote thatl the
functional set when combined with the st of iorminals
should have the property of closure. in other words, each
function musl be able (o aceept and retura a numeric value
when presented with an input. 1t may be noted. [or example.
that the function ‘sgrt” docs not have this propery
presented with negative numbers. In order 0 protect’ the
sgrt function, the absotute value of the input should be taken
before preseniation o the function.

Optimisation of Individual Fipressions: Whenever a new
expression  is  generaied, a nos-linear  least-sguares
optimisation i performed to obtain the “host” value of the
constani(s) in the expression. This allows the optimad values
to be obtained for cach suggested solution, thus reducing the
possibility of eliminating a potentially good structure due 1o
pootr parameter vajues,

The benefits of constant optimisation are demonstrated by
the following cxample, Suppose the objective is to fit a
model 10 the data presenied in Table 1, where "a" and b7 e
inputs and ‘y" is the output.

Q b y
.91 1.7] 5.00
.76 i.16 1.67

.26 .26 1,00
.05 -0.35 (.71
0794 | -0.06 1 056
Tabie b Input-Cuiput Data

Two candidate models may be.

V= 5.6%a-b)t (%
v= 1f{a-0.16) %9

which have corrclation finess values of 0.5 and 0.1,
respectively, If the crossover operator was applicd @ these
two expressions, one possible of[spring would be,

v = 1/i{a-h)-0.16) {10)

which has a correlation fitness value of only 0.2. However,
if the value of the constant in this new expression is
optimised. the following model is obtained.

v = 1i(a-b)-1.0) (11

which vields n {(dpess value of 1.0, Thus, without
performing an optimisation of the model constants, it i very
difficult 10 successfully transfer ‘good” building blocks from
one mathematical expression to another. This means that
models with an inherently good structure could be discarded
due to sub-optimal constants.

Penglise Large Solutions: Tt Is well recognised that as the
complexily of a model increases its ability to generalise {1hat
is, to fif unseen data as well as the training data) is
compromised,  Consequently,  large  #ees can  cause
overfitting of the data. In order 1o prevent the formation of
large trees. the correlation fitness function was penalised

according to the size of a tree.

The default settings used in this work for each run are
summarised in Table 2,

4, - 0 E M sgr,
square, log, exp
Relative abundance of operators: | equal

Functional set

Population size: N=25
MNumber of generations: G =60
Mutation nprobabilily: P.=02
Crossover probability: P.=10.8

Fitness function: Correlation
Generation gap: P = 90%
Table 2: Default Parameters used by the Genetic Program.

The settings were chosen in a heurdstic fashion. There is, no
doubt, for a given problem an “oplimum’ combination that
maximises the performance of the algorithm, However,
intengive trials would have o be conducted before such an
optimum parameter set conld be defined.

It will be noted that cach case study involved multiple nums.
This allowed a statistical analysis of the resulis o be
performed. In particular it cnabled:

o The frequency of runs that produced successful results o
be determined. This enables an assessment to be made as
1o the adeguacy of the program  settings. I the
probability of obtaining a successfill result (P is low,
then B may be nccessary to adjust some of the
parameters. In particular, i may be necessary (o increase
gither the population size or the number of generations
or both.

»  An analysis of the freguency of occurrence of each
member of the terminal set. This gives the probability
that a successful model containg a particalar input. in
other words, It gives the user a “feel” for the relevance of
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a particolar impw 1o the modeiling task. This i3
particuiarty important in the context of chemical process
systems. as the determination of the inputs that affect an
putput can be as time consuming as aciual model

development,
¢+ A igstoas o whether the standard deviation of the
residual orror of cach successful moded is significantly

different from the best model, This reduces the numnber
of successful models o a1 sct thal  demonsirates
comparable performance on the verification data,

in addition to being able 1o perform a statistical anaiysis of
the resuits, the use of multipte runs also allows the engineer
1o make an educated decision as to the most appropriaie
mode! for the task. Typically. the choice would be the
simplest mode! structure or the siruciure that confonms as
closely as possibie 1o current process undersianding,

STEADY-STATE MODELLING OF A COOKING
EXTRUDER

Cpoking extrusion has attracted considerable aitention from
the food mdustry in recont years, as il provides an efficient
means for the continuous processing of a wide range of
fondsnTs. Cooking extruders are already well established in
the production of snack foods, haby foods, breakfast cereals
and pastas. Extruders allow short residence time and high
temperatare cooking conditions which result inoa high
matritional value of the product and low progessing costs
{Smith and Ben-Gora, [1979]).

& typical extruder consists of a barrel inside which one or
more helical scrows totate o convey the feed material
wwards a die at one end. as iHustrted in Figure (3} The
seclion nearest the feed point is referred (o as the solids
conveying zone (SCZ5 where the serew channcls are only
partiaily [iled and there s no pressure build-up. At some
poind along the extruder, the channcls hecome completely
filled and the temperature and  pressure  increase
considernbly as a resuit of viscous heat dissipation and

material transport, This section s referred o ay the melt
zone (M2 Additional temperature contral may be provided
Wy heating or cooling scctions along the barrel,

Foed
Flow.
Moisture,

Available extruder models range from the purely empirical
10 those based on fundamental transport equations. In most
cases, these models have limited validity in terms of
operating conditions and system configuration due to the
complex flow patterns. pressure and temperature gradients.
changing material properties. and thermal effects that cxist
within an extruder. For complicated screw configurations,
exact calcnlation of internal conditions may be intractable.

in this section, GP is used o develop a modei for the steady-
state temperature and pressure at the die, Ty and Py the
distance of the MZ/SCZ boundary from the feed point, xuz .
and the stcady-state terperature distribution, 7, of a twin-
screw cooking extruder. A rigorous extruder model
proposed by Kulshreshtha et al, [1991] was used o
generaie 200 random, stcady-state data points. The input
variahles presented to the algorithm were the {eed Howraic,
0. feed moistare content, T, the screw speed, @, and the
extruder barrel temperature, T; (assumed uniform for the
length of the barrel}. The model settings used 10 gencrate
wraining data for the GP are summarised in Table 3 below,

Hyuder type: twin-barrel

Barrel fength: 235cm

Screw diameter: Scm

Screw pitch length: i0cm

fxiruded material; wheat flour/water mixiure

Feed inlet iemperature: 20°C

Feed rate, O 5-30 ke/h

Moisiure content, 0.1-0.8 v/v

Sorew speed, o 200-900 rpm

Barrel iemperature. Ty 10-200°C

Table 3; Extruder pararneters used 10 generate training
data for the Genetic Program.

Steady-State Modelling Resulls

When the GP algorithm was applied o the extruder data to
gencrate models for T, 45 out of the 50 runs were successful
om the basis of a RMS ersor on the verification data set of

Barrel Temperature, T,

Serew

(17171 ) LN ]S e

Speed, @ e/

1////;/////////y//ngMi

Solids Conveying Zone Melt

Zone

Figure 3: Diagram of a typical cooking exirader.
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Paramcler RMS3 Successful runs a1 95% | Variables Present in | Probability of Occurrence
tolerance conildence Sucressful Models in Successful Models
e 90-100%
Ty 10 TH-96% @ S0-100%
m 13-38%
T 2-21%
Or 82-100%
Py 40108 26-55% ® 82-100%
m -18%
P (-26%
O 56-100%
Kagin 0.002 AR 7T % 0] 86-100%
m 0-13%
1y D-13%
X 82-10%
i 0 26-35% 0w 82-100%
w 82-100%
m 4-40%
Ty 2-313%

Table 4: Summary of resulis obtained using GP 10 generate extruder input-output models.

less than 10, Using the binomial distribulinn at the 5%
confidence level, 78-96% of all runs should meet this ervor
toferance. This success rale was deemed satisfactory and no
further mans were made. The fregquency of eccurrence of
each member of the terminal set was then determined. This
indicated {at the 93% confidence leveld) that 90-100% of all
successful models would contain input variables Or and w,
{3-38% would contain T, while only Z-21% would include
T, This clearly indicated that, as cxpected. Qp and o are the
dominant variables influcncing the iemperature at the die.

After determining that the moedel residual errors were of
zere mean and normally distributed, an F-test was used 1o
reduce the set of candidate models 1o 8. The simplest madel
from this set was then chosen as being the most appropriate,
yiclding:

Ty =20+ (157910%0 +8.140.107)
.
~1072 0y + 4027

(12)

This model structure had an RMS crror on the raining data
sei of 5.21 and an RMS crror on the {unsgen) verification set
of 4,69, Thus, an cxcellent Gt can been obtained without the
inclusion of 73, and .

The die temperature is quite non-lincar with respect to O
and w. particularly in the high lemperature region, It is
interesting {0 note that the inverse relationship between feed
flow and die temperature i shown explicitly in the model by
the inclusion of the teom “UQ; . U would prove guiie
difficult to exiract this kind of process information from
other “black box’ modelling technigues, such as aeural
reiworks.

Suntlar runs were performed to generate models for the die
pressure, Py location of the melt vone., xyz and the

distributed temperature profile within the extruder, 7. The
results of the runs are summarised in Table 4.

Following the procedure detailed above for T, the final
maodel siructures were:

i Or L s
2 :{28.2 + 03440 — 1458w +2090{}-&_}x10 (13)

c 170 590 07579
39370, 7% 16220 J .
0 u

Az = (32502 ~ [ £

2 B
X ~ 30,
T =882 100 2 gyt 00T
Qr 32.15-307.5x°

(15)
Eguation (13} is the model obtained for the prossure at the
dig. It can be scen that the GP algorithim bas excluded both
input variables T and Ty from the model, which is a function
of Or and © only, As the pressure generated within an
extruder is Inrgely due 1o material transport and viscous heat
digsipation, it secerns reasonable that Op and ©, parameters
that have a large influgnce om these factors, should be
present in successtul models for Py

The location of the MZ/SCZ boundary is predicied by (14).
It may be noted that the constant form in the expression
(0.2502) is a close approximation (0 the actual extruder
barrel length {0.25m) used in this problem. From this is
subtracted a term which represents the length of the MZ
The form of this latter term indicates that the predicled
length of the MZ would increase with Increasing Qr. and
decrease  with increasing . This is  precisely the
relationship expected [rom pur mechanistic knowledge of
the process.

The temperature at any point along the extruder’s length is
predicted by (13). When x, the distance from the feed point,
s set to zerp in this equation, the expression reduces o

]



7=10.6, which is approximately cqual o the aceal inlet
temperature of 20°C. The first term in this cquation also
exhibits an ©° dependence, a torm that is representative of
the viscous power generated by the screw, divided by Or. a
term which can be associated with the heat capacity rate of
the material being extruded. Henee. this term, with a
sujtable constant, might be loosely interpreted as an
expression {or the temperature change per unit length due o
viscous heat dissipation within the extruder.

For cach variable modelled, the algorithm has determined
simple expressions that accuralely describe the output
behaviour, Although all inputs that were thought to affectan
ouiput were made available to the algorthm, jrrelevant
inputs have been climinaied from the final expressions. GP
has also shown tho ability to determine (he relevant
constants, and produce models of a structure that provide
insight into the wnderlying process characteristics.

DYMAMIC MODELLING OF A PLASTICATING
EETRUDER

i this section. the GP algorithm is applied to dynamic data
from an industrial plasticating extruder vsed {0 coal wire.
The process uiilises a plasticating extruder {itted with a wire
coating die through which the wire is continuously drawn.

There are a number of parameters that affect the gualily of
the wire product, such as the thickness and physical
characteristics of the polymer coating. 1t has  been
determined experimentally that there is 2 good comelation
between product guality and the viscusity of the polymer as
it jeaves the extruder, 7. This can be measured using an on-
ting rhoometer, however the great cost of such equipment
has encouraged the development of a model to infer 7, from
other measerements. The aim here was o develop a model
for 14 using past values of feed rate, §p, temperature al the
die, Ty and screw specd, o only.

There has been litle success in the development of
mechanisiic models of this process. However, Wagner anid
WMontague {19941 have previously developed neural network
and MARMAX  (Non-Linear  Awulo-Regressive  Moving
Average eXogeneous input) models with some success,

MNARMAX models (Biliings and Leonartis, 11983]) are a
recursive time  serics  relationship beiween  inputs and
putpuis, The singic input, single owiput case has the general
fomm:

W)= Flulehn(r - Don(~m) =D -m)} (16

where g is the system input and v is the system outpul. The
non-lincaritics in {16) are wsually limited 1o polynomial
functions of the time-delayed input and output variables.
Nevertheless. selection of the optimal sei of non-lincar terms
can prove somewhat problematic, particelarly if the set of
inputs to the sysiem is large.
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The approach presented here is based on NARMAX
modelling principles, however the GP algorithm was used 1©
develop the model and determine the relevant non-linear
groups.

In order to develop a dynamic model. a time history of
inputs Up, Ty o and the predicted outpui, 74 were
presented to the GP algorithm, For each of the inpuwt
variables, the time history consisted of the previous three
sample values. As preliminary data analysis had revealed a
dead time of at least four sample time units between OF and
Tig» the algorithm was provided with a time history of six
sampled vatues of O beginning with Qx(r-3,

Due to the computationally intensive nature of this problem,
it was only possible to complete 30 runs. Of these, 5 were
deemed successful on the basis of a RMS error on the
verification data set of less than 0.16. Clearly, this s
insufficient to enabie 2 meaningful analysis of the frequency
of occurrence of members of the terminal set in successtul
models.

An F-test was used 1o reduce the set of successful models to
4, The model having the smoothest dynamic response from.
this set was then chosen as being the most appropriate,
yiclding:
M, (= 07120, — 1} 045301 - 3)
+\/4.27 0™ 002100 (= 43+ 002270,/ 4?}2 (a7
03567, {1~ 3)0p{r —4) - 0.590

This modef structure had a RMS error on the training data
set of 0,135 and 2 RMS emor on the verification set of
0.178. This result is significantly better than that obtained
by a lincar (ARMAX) mode! structure {with a RMS on
verification data of 0221}

A plot of the actual output compared with the estimated
output calculated using (17) is shown in Figure 4. Plot (a)
contains the training data set, while (b} containg  the
verification data, The data has been scaled. As the plots
show, an excellen: fit has been obtained on both the training
and verification data.

From (17) it may be observed that (-3} has been
effectively eliminated from the model, consisient with the
presence of a time lag between Oy and Ta. Also, no past
values of screw speed have been included in the successiul
mode?. Ie is possible that there was insufficient excitation of
screw speed in the data used.

It shouid be noted that the mode! was developed using a
relatively small set of plant data, approximately 350 data
points. A comparable result obtained using for example
neural networks would require a far larger set of training
data.
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COMCLYUSIONS Koza, LR, Genetic Programming: On the programming of
computers by means of naetural selection, MIT
The application of Genetic  Programming  io  the Press, 1992,

development of steady-staic and  dynamic  input-output
models of extrusion processes has been congidered. Two
examples were used to highlight the wtility of the algorithm.
The results revealed that the algorithm could generate an
appropriate model based solely on observed data. A distinct
advantage of this method is thal no a priort assumptions
have to be made about the actual model form - the struciure
and complexity of the mode] evelve as part of the problem
solution.
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